
 DuetHero
 A game in which you and your VIC-20 play Bach music together.

 Author: David Youd
 8-bit system: Commodore VIC-20
 Language: Commodore BASIC V2.0
 Category: PUR-120 (max 120 chars per line, BASIC abbreviations allowed)

 I authorize the BASIC 10 Liner Contest judges the unrestricted publication rights over this
 program and its associated documentation and media files.

 Links:
 ● Game: http://youdzone.com/c64/duethero
 ● Disk image containing the game: http://youdzone.com/c64/duethero.d64
 ● Youtube game playthrough: https://youtu.be/1MsPcFrKA6E
 ● This document hosted at http://youdzone.com/c64/duethero.pdf

 ○ Last documentation revision: March 14th, 2022
 ● Animated GIF preview: https://youdzone.com/c64/duethero.gif
 ● Competition games list: https://gkanold.wixsite.com/homeputerium/games-list-2022

 Setup:

 For play on a real VIC-20
 Write the program to a floppy disk (e.g., with a ZoomFloppy setup) or use a modern
 VIC-20-connected storage device (e.g., SD2IEC).

 1

http://youdzone.com/c64/duethero.prg
http://youdzone.com/c64/duethero.prg
https://youtu.be/1MsPcFrKA6E
http://youdzone.com/c64/duethero.prg
https://youdzone.com/c64/duethero.gif
https://gkanold.wixsite.com/homeputerium/games-list-2022

 If you have a Sight&Sound piano keyboard overlay, put it over your VIC-20’s keyboard. If not,
 you can use the key input instructions detailed in the emulated play section below.

 For emulated play
 Using the VICE emulator (https://sourceforge.net/projects/vice-emu/), start a VIC-20 emulator
 (e.g., GTK3VICE-3.6.1-win64\bin\xvic.exe).

 Since the piano keyboard overlay is not available for modern computer keyboards, use this
 note-to-keyboard mapping:

 Starting the game
 Load the game and run it.

 2

https://sourceforge.net/projects/vice-emu/

 Important: if using SD2IEC on real hardware, do not load the game from the “FB20” program
 selection menu, as that can corrupt the game such that you lose instantly. The directory listing
 contains a reminder of this warning:

 3

 A “trainer” mode can be selected by pressing “Y” on the game’s title screen. In this mode, you
 can practice the entire song without the song stopping early (which happens when a required
 note is not pressed at the right time).

 Gameplay
 In DuetHero, you and your VIC-20 will create music together. The song is Bach’s Two Part
 Invention #13 (BWV 784), which is the tune that the Commodore company used in many of
 their TV commercials (e.g., https://www.youtube.com/watch?v=Q7_j_ABrkn8).

 4

https://www.youtube.com/watch?v=Q7_j_ABrkn8

 Musical notes will begin moving up the screen in two columns. Notes written in lowercase are
 for the lower octave, upper case for the upper octave. If the note is “sharp” (a black key on the
 piano keyboard overlay), it will be followed by a “#” symbol (see the “g#” in the above
 screenshot).

 Notes are ready to be played when they enter the green area at the top of each column. The
 VIC-20 (left note column) plays the bass line automatically, while the player (right note column)
 must play the treble notes in time with the bass. Wrong notes are tolerated, as long as required
 notes are played. Unless the game is in training mode, failure to play the correct note when
 required will end the game.

 (Note, if using real hardware and a Sight&Sound piano keys overlay, avoid pressing the very
 highest note, as it’s not needed to complete the game, and some of the piano overlays press the
 RESTORE key along with the INST DEL key at the same time. Occasionally, this event will
 cause the game to abort.)

 5

 A percent completion will be displayed when the game is over. Press any key to return to the
 game’s title screen.

 If you don’t have the piano keyboard overlay…
 Here are the keystrokes needed to win the game, just be sure to press them at the right time. If
 you know the bass line notes and rhythm, you won’t even have to look at the screen. ;)

 6

 Program Description
 This program is written in 10 lines of BASIC. It works on an unexpanded VIC-20. When
 running, the program uses 1744 bytes of RAM in the BASIC area (code and variables), and 245
 bytes of RAM outside of the BASIC area (673 to 724 and 829 to 1022) to store data.

 Commentary on each line below:

 0 poke 648 , 2 : print "{home}{down*7}{right*7}Q2W3ER5T6Y7UI9O0P
 {sh asterisk}-*{cm -}{pi}st@{reverse on}gosw
 {arrow left}#'/37;?CGIKOQTWY{sh +}{sh -}{cm asterisk}{cm k}
 {cm t}{cm @}" : dim k%(255): for i= 1 to 24 :k%(peek (672 +i))=i: next
 Line 0:

 ● Location 648 is used to change the top page of screen memory. By changing this value,
 data can be stored directly into a chosen memory range using PRINT statements. This
 is not self-modifying code, but rather, a replacement for a READ/POKE loop over DATA
 statement values (for more details on this technique, see p56-57 of Mapping the
 Commodore 64 , COMPUTE! Publications, 1984). In this case, POKE 648,2, followed by
 a cursor home, down 7, then right 7 is printing values at the start of some free non-basic
 memory at 673; 673 = 2(page)*256 + 7(down)*22(row width) + 7(right).

 ● Special PETSCII characters are represented in this code listing using CBM Prg Studio’s
 (https://www.ajordison.co.uk/) syntax: {home}=19, {down}=17, {right}=29, {sh

 7

https://www.ajordison.co.uk/

 asterisk}=96, {cm -}=220, {pi}=255, {reverse on}=18 , {arrow left}=95, {sh +}=219, {sh
 -}=221, {cm asterisk}=223, {cm k}=161, {cm t}=163, and {cm @}=164. Note: {reverse
 on} sets bit 7 on screen codes.

 ● The PETSCII in the PRINT statements are not selected for their PETSCII values, but the
 values they’ll have as screen codes once printed; example: to get the value of 31 in
 memory, “{arrow left}” is used (PETSCII value 95), which will have screen code value 31
 when printed to memory. This can be confusing (certainly to me, since I have dyslexia),
 so I wrote a python program that converts arbitrary bytes for memory ranges into
 Commodore BASIC PRINT statements, using the special-character conventions from
 CBM Prg Studio (my development environment).

 ● The PRINT statement contains data for mapping the two piano octaves (note number 1
 to note number 24) to the following commodore keys’ PETSCII values: 81, 50, 87, 51,
 69, 82, 53, 84, 54, 89, 55, 85, 73, 57, 79, 48, 80, 64, 45, 42, 92, 94, 19, and 20. It then
 contains a mapping from ascending note numbers to their pitch frequencies: 0 (no
 sound), 135, 143, 147, 151, 159, 163, 167, 175, 179, 183, 187, 191, 195, 199, 201, 203,
 207, 209, 212, 215, 217, 219, 221, 223, 225, 227, and 228. The frequencies array is
 used by both the soprano oscillator (controlled by player) and the bass oscillator
 (controlled by VIC-20), even though the soprano and bass oscillators’ pitches are offset
 by two octaves.

 ● The array K% is defined such that it can convert PETSCII values (0 to 255) from the
 keyboard buffer into note numbers (0 to 24, where 0 is note off). K% is sparsely
 populated (90% zeros), and these unmapped PETSCII-index keyboard assignments
 become note-off events.

 1 poke 648 , 3 : print "{home}{down*2}" tab (17) "@ejmlelom@q@i@q@jejmlelom@
 j@@@@@@qmqjmehf@j@o@r@@olohlcfe@h@m@q@@mjmf@o@@lhle@m@@jfjc@l@m@@@@
 @@@" ;
 Line 1:

 ● Stores the treble note data (and three bytes of bass data) in memory, starting at 829 (as
 3*256 + 2*22 + 17) . This time TAB() is used to move the cursor right (more compact
 than 17 cursor-right control characters).

 ● All notes are staccato, and note duration is represented by varying the number of
 note-off (zero-value) events.

 ● Treble note data: 0, 0, 0, 0, 0, 5, 10, 13, 12, 5, 12, 15, 13, 0, 17, 0, 9, 0, 17, 0, 10, 5, 10,
 13, 12, 5, 12, 15, 13, 0, 10, 0, 0, 0, 0, 0, 0, 17, 13, 17, 10, 13, 5, 8, 6, 0, 10, 0, 15, 0, 18,
 0, 0, 15, 12, 15, 8, 12, 3, 6, 5, 0, 8, 0, 13, 0, 17, 0, 0, 13, 10, 13, 6, 0, 15, 0, 0, 12, 8, 12,
 5, 0, 13, 0, 0, 10, 6, 10, 3, 0, 12, 0, 13, 0, 0, 0, 0

 2 print "@j@v@@@u@vqvyxqx[y@v@u@q@vqvyxqx[y@v@y@v@[vrvorjml@o@t@x@@t
 qtmqhlj@m@orloh@l@mqjmf@c@htrtm@@@@" : poke 648 , 30 : poke 649 , 1
 Line 2:

 ● Bass note data (some on previous line): 0, 0, 0, 0, 10, 0, 22, 0, 0, 0, 21, 0, 22, 17, 22,
 25, 24, 17, 24, 27, 25, 0, 22, 0, 21, 0, 17, 0, 22, 17, 22, 25, 24, 17, 24, 27, 25, 0, 22, 0,
 25, 0, 22, 0, 27, 22, 18, 22, 15, 18, 10, 13, 12, 0, 15, 0, 20, 0, 24, 0, 0, 20, 17, 20, 13, 17,

 8

 8, 12, 10, 0, 13, 0, 15, 18, 12, 15, 8, 0, 12, 0, 13, 17, 10, 13, 6, 0, 3, 0, 8, 20, 18, 20, 13,
 0, 0, 0, 0

 ● Return the top of screen memory to its default location.
 ● Limit the keyboard buffer to a single character capacity.

 3 n$= " c c#d d#e f f#g g#a a#b C C#D D#E F F#G G#A A#B C C#D " :
 print "{clear}{142}{white}{down*7}{right*3}{cm m}M{down}{left*2}
 {cm m}{down}{left}Q{up}{right*3}duet{down}hero{up}{right*3}.{down}
 {left}W{down}{left}{cm g}{down}{left}{cm g}{down*2}"
 Line 3:

 ● N$ supports mapping from note values (0 to 24) to a two-character note name.
 Lowercase denotes the lower piano octave, and upper case denotes the upper octave.

 ● The PRINT statement draws the DuetHero game title screen. More CBM Prg Studio’s
 syntax values: {clear}=147, {142}=142, {white}=5, {cm m}=167, {left}=157, {up}=145, and
 {cm g}=165. {cm m} changes to the upper-case character set when printed.

 4 v= 36878 : poke v+ 1 , 110 : print " trainer (y/n)?" : poke 198 , 0 : wait 198 , 1
 : get t$: print "{clear}{ct n}{down*5}{right*4}VIC-20 PLAYER" : print "
 {down*2}{right*5}{green}> < > <{white}{down*4}"
 Line 4:

 ● Change the screen and border color to blue.
 ● Ask player if they want trainer mode.
 ● Clear the keyboard buffer, wait until a key is pressed, and put that value in T$. If the

 value is “Y”, then trainer mode is on, and the game will be unlosable.
 ● Draw the play field, one column for the VIC-20’s bass note scroll, and the other column

 for the player’s treble note scroll. {ct n} switches to the mixed-case character set. The
 angle brackets denote the top of the vertical note scrolls. When notes scroll into this
 position, it is during that window of time that the VIC20 plays the bass note, and the
 player attempts to perform the correct treble note.

 5 poke v, 15 :a$= "LOST" : deffn v(x)= peek (o-(x> 0)*x): for i= 1 to 95 :o= 925 :q=
 fn v(i- 4):m= fn v(i):o= 828 :r= fn v(i- 4):n= fn v(i)
 Line 5:

 ● Turn on the volume
 ● Game result string will contain “LOST” (unless later changed)
 ● Define the function FN V(X) to return “PEEK(MIN(O, O+X))”. This works because

 Commodore BASIC V2 treats True as -1, False as 0, and because unary negation has
 higher operator precedence than multiplication. Therefore, -(X>0)*X is X when X>0,
 and 0 when X<=0. This function is needed because a note is played -4 steps from
 the note most recently displayed in the vertical scroll, but we don’t want those initial
 negative indices underrunning the start of the note data.

 ● Setup I loop to process 95 16th note durations (the shortest rhythmic division in this
 game)

 9

 ● Set memory offset (var O) for start of bass note data, then Q gets the next bass note
 to play. M gets the next bass note to display. Same is done for the treble, with N as
 the next note to display, and R as the note the player will attempt to perform. Sound
 lags five (as -4) steps behind the display in the scroll.

 6 for j= 7862 to 7950 step 22 : poke j, peek (j+ 22): poke j+ 1 , peek (j+ 23): poke j+ 8
 , peek (j+ 30): poke j+ 9 , peek (j+ 31): next : poke v- 4 , peek (697 +q): poke v- 2 , 0 :
 print "{up}{right*6}" ;
 Line 6:

 ● The J loop scrolls both of the two-character note columns upward by copying screen
 memory from lower rows to higher rows.

 ● Play the bass note (note number in Q).
 ● Turn off the player’s note before entering the next note duration window. Note: back

 when I had 11 BASIC lines, I was able to allow a note to be played in advance of the
 note’s window if the previous note was already performed correctly (W was set to zero
 when correct note played, but then could be set to a new note value for the next
 upcoming note window). But I gave that up when getting it down to 10 lines (some hints
 of this previous logic remain on line 7). So now you have to play a note during the note
 window, which makes the game a bit more difficult. There’s probably a 10-line solution
 for my previous approach, but I’ve not found it.

 ● The trailing semicolon allows the PRINT to be split across two lines.

 7 printmid$ (n$,m* 2 + 1 , 2) "{right*6}" mid$ (n$,n* 2 + 1 , 2): for t= 1 to 7 :l= peek
 (631): poke 198 , 0 : poke 631 , 0 :w=-(l= 0)*w-(l> 0)*k%(l): if w> 0 thenpoke v- 2 ,
 peek (697 +w)
 Line 7:

 ● PRINT continues by adding the next bass and treble note names to the bottoms of their
 respective vertical scrolls.

 ● Set up the T loop for 7 iterations. The player gets a window of 7 chances to enter the
 correct note.

 ● The player’s input is read from the keyboard buffer and put into variable L. L is the key’s
 PETSCII value, or 0 if no key pressed. After the read, the buffer is marked as empty,
 and the buffer contents set to 0.

 ● W=-(L=0)*W-(L>0)*K%(L) means if L is 0, then W is unchanged, but if L>0 then W gets
 the note number by using L’s PETSCII value as an index into K%.

 ● If W’s note number > 0, then play it (note: it doesn’t hurt to re-play the currently playing
 note).

 8 s=-(s= 1)-(s= 0 and (r= 0 or r=w)):w=-(s= 0)*w: next : on -(t$<> "y" and s= 0 and
 r> 0) goto 9 :s= 0 : next :a$= "WON!" : rem pbzvat fbba gb unccyrtnzrf
 Line 8:

 ● S is 0 if the correct note has not yet been entered, and S is 1 if it was.
 S=-(S=1)-(S=0AND(R=0ORR=W)) means if S=1, no change to S. But if S=0 and R

 10

 (correct note) is either 0 (no note) or W (the user-selected note) then S=1 otherwise
 S=0.

 ● W=-(S=0)*W means that if S=0 then W is unchanged, but if S=1 then W=0
 ● This ends the definition of the T loop (that started in line 7); the opportunity to enter the

 correct note is over.
 ● ON GOTO statements compute a value from 0 to n, and use this value to select from a

 list of line numbers (in this case, only one) it will GOTO. A zero value results in no
 GOTO. ON GOTO has the advantage of not prematurely terminating a line like an
 IF/GOTO construct would. This ON GOTO (the only GOTO in the entire program), stops
 the game if a note was required (was not a rest) and the correct note wasn’t entered. In
 trainer mode, the GOTO will not be taken.

 ● If the GOTO wasn’t taken, then reset S to zero for the next note window.
 ● Complete the I loop setup in line 5.
 ● All possible notes have now been performed successfully, so change A$ from “LOST” to

 “WON!”
 ● The REM is a shoutout to my good friend and CEO of HappleGames, Inc.

 9 print "{down*2}{right*4}" int ((i- 4)/ 92 * 100) "{left}%, YOU " a$: print
 "{down}{right*6}GAME OVER" : poke v- 4 , 0 : poke v- 2 , 0 : for t= 1 to 1000 : next :
 poke 198 , 0 : wait 198 , 1 : run

 Line 9:
 ● Print the percent game completion, and win or lose status, and display that the game is

 over.
 ● Turn off the oscillators.
 ● Insert a short delay, then clear the keyboard buffer, wait for a key to be pressed, and

 return to the game’s title screen.

 Code listing showing PETSCII control characters
 This was generated using the DirMaster tool:

 11

 Proof of PUR-120 line-length compliance
 This listing shows the BASIC abbreviations. All PETSCII graphic glyphs and control characters
 have been replaced with tildas (“~”) for easier line-length validation (this does not change the
 line length):

 Columns 1 to 60:
 1 111111111 2 222222222 3 333333333 4 444444444 5 555555555 6

 123456789 0 123456789 0 123456789 0 123456789 0 123456789 0 123456789 0

 0pO648,2:?"~~~~~~~~~~~~~~~Q2W3ER5T6Y7UI9O0P~-*~~st@~gosw~#'/
 37;?CGIKOQTWY~~~~~~":dIk%(255):fOi=1to24:k%(pE(672+i))=i:nE

 1pO648,3:?"~~~"tA17)"@ejmlelom@q@i@q@jejmlelom@j@@@@@@qmqjme
 hf@j@o@r@@olohlcfe@h@m@q@@mjmf@o@@lhle@m@@jfjc@l@m@@@@@@@";

 2?"@j@v@@@u@vqvyxqx[y@v@u@q@vqvyxqx[y@v@y@v@[vrvorjml@o@t@x@
 @tqtmqhlj@m@orloh@l@mqjmf@c@htrtm@@@@":pO648,30:pO649,1

 3n$=" c c#d d#e f f#g g#a a#b C C#D D#E F F#G G#A A#B C C#D
 ":?"~~~~~~~~~~~~~~M~~~~~~Q~~~~duet~hero~~~~~.~~W~~~~~~~~"

 4v=36878:pOv+1,110:?" trainer (y/n)?":pO198,0:wA198,1:gEt
 $:?"~~~~~~~~~~~VIC-20 PLAYER":?"~~~~~~~~> < > <~~~~~"

 12

 5pOv,15:a$="LOST":dEfnv(x)=pE(o-(x>0)*x):fOi=1to95:o=925:q=f
 nv(i-4):m=fnv(i):o=828:r=fnv(i-4):n=fnv(i)

 6fOj=7862to7950stE22:pOj,pE(j+22):pOj+1,pE(j+23):pOj+8,pE(j+
 30):pOj+9,pE(j+31):nE:pOv-4,pE(697+q):pOv-2,0:?"~~~~~~~";

 7?mI(n$,m*2+1,2)"~~~~~~"mI(n$,n*2+1,2):fOt=1to7:l=pE(631):pO
 198,0:pO631,0:w=-(l=0)*w-(l>0)*k%(l):ifw>0tHpOv-2,pE(697+w)

 8s=-(s=1)-(s=0aN(r=0orr=w)):w=-(s=0)*w:nE:on-(t$<>"y"aNs=0aN
 r>0)gO9:s=0:nE:a$="WON!":rem pbzvat fbba gb unccyrtnzrf

 9?"~~~~~~"int((i-4)/92*100)"~%, YOU "a$:?"~~~~~~~GAME OVER"
 :pOv-4,0:pOv-2,0:fOt=1to1000:nE:pO198,0:wA198,1:rU

 Contact:
 I had fun making this. If you wish, you can reach me at:

 cryptoboy
 at gmail
 dot com

 13

