
1

The Commodore 64
Orchestrion

CRX 2019

David Youd
David Knapp

Joeri van Haren

Slide Deck V1.0

Retrocomputing Projects
• Ways people create in the retrocomputing

space:

– Doing 8-bit things in modern settings
• e.g., create an 8-bit bitcoin mining rig

– Doing modern things in 8-bit settings
• e.g., build a working 6502 in Minecraft

Redstone

– Doing 8-bit things in analog
• e.g., TinkerToy computer that plays tic-tac-toe

– Doing analog things in 8-bit
• e.g., C64 KoalaPad Theremin simulator

• Same with music:
– e.g., new performances of old chiptunes,

new chiptunes of old music, etc. 2

8-Bit Symphony
• I’ve had the privilege of correspondence with Chris Abbott

(UK) during the years in which he produced a full Commodore
64 game music Symphony*

3

• This got me wondering if I could reverse the idea: take a short
symphonic piece and adapt it to a large number of C64s…

* Hull Philharmonic (UK) June 15th 2019, https://www.8-bit-symphony.com/

Abbott Youd

Named the Effort
“The Commodore

64 Orchestrion”

• Orchestrion [awr-kes-tree-
uhn]: a machine that plays
music and is designed to
sound like an orchestra or
band

• Goal: Use a larger number of
Commodore 64s to play
music

4

The Englehardt Orchestrion (1915)
Contains a piano, two ranks of flute pipes,
tambourine, wood block, triangle, snare
drum, bass drum, and cymbal.

On display at the Musée Mécanique
Pier 45, Fisherman’s Wharf, San Francisco
Photo by David Bedel

5

Making
The YouTube

Proof Of Concept

Multiple-Commodore
Adaptation of

Tchaikovsky’s Dance of
the Sugar Plum Fairy

• Selected DotSPF because:
1. Recognizable

2. Short

3. Piece characterized more by note content than by
timbre / tone colors
• (easy to adapt to simple waveforms)

4. Many midi scores available online
• They’re all riddled with note errors, but still a leg up

• Having a paper score reference was a must
6

Creating
the Score

• Sibelius software used to
create the score
– Sibelius is the industry

standard for music
engraving and score
production

• DotSPF Staves:

7

– Flute I, II, III

– Oboe I/II

– English Horn

– A Clarinet I, II

– Bass Clarinet

– Bassoon I, II

– Horn I/II, III/IV

– Celesta

– Violin I, II

– Viola

– Cello

– Double Bass

Sibelius Processing

• Wanted to get all the notes correct in 64-bit space
before exporting midi data into the 8-bit space

• I’m not even an armchair conductor, so an important
first step was to move away from transposed staves

– Transposing instruments have notes written at a pitch
different than what will be produced by the instrument

• Allows performers to reuse a set of fingerings across
members of their differently-pitched instrument family.
Examples:
– English Horn: C4->F3, A-Clarinet: C4->A3, etc.

• Sibelius made it easy to normalize the pitches
8

30 Voices Using 10 SID Chips

• Each voice has:

– An ADSR envelope

– Waveforms: sawtooth,
triangle, pulse, and
whitenoise

• SID voices share:

– Filter (lo, band, hi)

– Master volume

• Chip has many cool features

– (not for this talk)

9

• Choose 10 SIDs (30 voices) in order to represent
each instrument type in the DotSPF score
– The celesta takes 6 voices all by itself

SID chip has three voices

SID-Wizard: A C64 Tracker
• SID is an overloaded term,

can refer to:
– The sound chip in a C64,

– A piece of C64 music, or

– A file containing C64 music

• SID files are generally created in music
tools called trackers
– Very compressed music representations

– Voice organized into columns, with notes
spanning rows

– Loops can be created, with modified
playback (pitch, tempo, etc.), in arbitrary
order

10

Created by Mihály Horváth (aka Hermit)
v1.8 2018, https://csdb.dk/release/?id=165302

• Selected SID-Wizard for creating the 10 SID files
– Many excellent cross-platform SID-creation tools out there

• e.g., GoatTracker

– But SID-Wizard is a native C64 application
• Let’s you spend more time on a Commodore doing Commodore stuff ☺

The YouTube Proof of Concept

11

• VICE-Emulated version uploaded April 2019: https://youtu.be/zsd_L8eN18c
• Got lots of positive reception. However, received a few dissenting PMs, no

doubt due to C64 regional/cultural differences. Let me explain…

Sure, Quality Takes A Hit, But Do You See How BIG It Is?!?

12

Food

Vehicles

Multi-SID
music

• The UK/European scene is uncontested when it comes to creating
high-quality SID music that pushes a C64’s capabilities to the limits
• I didn’t do any of that.
• Unsurprisingly, I’ve had a few SID cultural gatekeepers tell me that I'm having

fun the wrong way. ☺

UK/Europe ‘Merica

This Just In:
A New 8-SID
Demo (Last
Weekend):

• “The Tuneful Eight”
– https://www.youtube.com/watch?v=KnFin5dxWLg
– Awarded 2nd place in "Alternative Platform Compo" at Evoke

2019 in Cologne (August 16th-18th, 2019)
– Coding: Steffen Goerzig, Music: Lman - Markus Klein, GFX: Joe -

James Svärd

• Specs:
– Performed on a single Ultimate64 Elite
– Runs special firmware to support 2x2 UltiSIDs and 2x2 FPGASIDs

for a total of 8 replacement SIDs (24 voices) 13

14

Getting MIDI into
SID-Wizard

SID-Wizard
Can Import
MIDI From

Any DAW
(i.e. Sibelius)

• NecroPolo (et al.) created an overview* (above) of the
SID-Wizard Midi import process -- in summary:
1. Separate polyphony into (up to three) separate single-voice

tracks, then export as a midi file

2. On a modern OS, process with the SWMconvert utility (a trivial-
to-port C program) to create a native C64 SID-Wizard SWM file

3. Run SID-WIZARD-1.8.PRG (C64) and design the instrument
waveforms

15

* “8 Steps” (2012) https://csdb.dk/release/index.php?id=113158

Simple, But There’s A Few Gotchas

• Two problems with the midi import process:
1. Timing of triplets get mangled

2. Even after separating staves, Sibelius sometimes
exports them together in a common track (if
they share an instrument type)
• SID-Wizard needs these separated

• A little background will give context to each
problem (and its solution)…

16

Binary Division of Note Durations

• A note can be divided into two notes of half the
duration

17

• Sometimes you need to divide durations into three
equal parts…

Long Ago: Notes Could Evenly Divide
by Three Into Other Note Types

• Ternary divisions were “perfections” (influence: the Holy Trinity)
• Modern notation only kept the Imperfectum minor binary divisions

(influence: four elements/humors/seasons, etc.) 18

Mensuration
sign

Mensural note subdivisions:
breve -> semibreve -> minim

Measure
sign

Example usage

Imperfectum
minor

= = or
Twinkle, Twinkle,

Little Star

Perfectum
minor

= = or
Chim Chim Cher-ee

(Mary Poppins)

Imperfectum
maior

= = or
Pop Goes

the Weasel

Perfectum
maior

= = or
Clair de Lune

(Debussy)

2

4

3

4

3

2

6

8

6

4

9

8

9

4

Today: Triplet Notation Often Used to
Indicate Division by Three

19

• Dividing a duration into three
equal parts usually requires
grouping notes into a triplet

• Problem: Many notation-aware Commodore music
programs lack support for triplets
– e.g., Electronic Art’s Music Construction Set, Commodore 128

BASIC 7.0’s music commands, Commodore’s Music Composer,
etc.*

• SID Trackers (i.e. SID-Wizard) are row-based and can create
arbitrary note durations
– However, those offering midi importers tend to make binary-

division assumptions, failing to import triplets correctly

• Solution: What if we could get our 14th century on, and
create 3-part divisions without triplets?
– Turns out we can scale music durations to do exactly that

* Of course, some do support triplets -- e.g., Brøderbund's The Music Shop, Activision’s Music Studio, Compute's Enhanced
Sidplayer format, etc.

A half note divided into three beats

Scaling Durations

20

x= 3
2

x2
3

=

3

=

Dotted notes:Triplet notes:

The two (above) scalings are reciprocal, so:

• Modern music notation allows note durations
to be scaled:

(Yes, you can put just two notes in a triplet. You can also mix note types and rests in a triplet as well)

Metric Modulation To Remove Triplets
• Nearly all C64 music software supports dots and ties,

therefore metric modulation can be used to remove
triplets

– An example: Multiply the time signature, the
BPM, and all note durations by 3/2

21

– The 2nd measure has the same rhythm and the same
perceived tempo as the 1st measure
• Notation indicates 2nd measure performed at 120*1.5 = 180 BPM

• This solution generalizes (eliminate 5-tuplet
groupings, etc.)

x1.5

SID-Wizard Tempos and Rows-Per-Beat
• The metric modulation fix to Problem #1 creates an

additional opportunity
• Can use metric modulation functionality to select the meter for each

SID that minimizes the tracker row counts
– This requires different SID-Wizard tempos

• SID-Wizard offers 64 play speeds: tempo 0 (fastest)
to $3F (slowest)
• Perceived music tempo is unaffected by changes in SID-Wizard tempo

when the (rows-per-beat * SID-Wizard tempo) remains a constant

• The 10 SIDs in the YouTube Orchestrion demo use
different SID-Wizard tempos
• However, the rows-per-beat * SID-Wizard tempo is always 24

– Beats Per Minute (BPM) for NTSC ≈ 3007.4744 / 24 ≈ 150 BPM

• This makes the YouTube video more visually appealing
– Each SID plays back at a different speed, but the music still lines up in time 22

Mapping Note Durations To Non-
fractional SID-Wizard Row Counts

• Green (above) shows available integer solutions to duration
divisions for a varying number of rows per quarter note

• Each SID uses the minimum rows-per-beat count based on the
granularity of its note durations, e.g.:
– Horns only use multiples of quarter notes, so 1 row-per-beat is sufficient
– However, the celesta requires 24 rows-per-beat

• 3 rows for 32nd notes, and 4 rows for 16th triplet notes (circled above)*

Metric
mod

factor

Rows
per

SID-
Wiz

tempo

0.25 1 24 ($18) 3 2 1.33 1.5 1 0.67 0.75 0.5 0.33 0.38 0.25 0.17 0.19 0.13 0.08

0.5 2 12 ($0C) 6 4 2.67 3 2 1.33 1.5 1 0.67 0.75 0.5 0.33 0.38 0.25 0.17

1 4 6 12 8 5.33 6 4 2.67 3 2 1.33 1.5 1 0.67 0.75 0.5 0.33

1.5 6 4 18 12 8 9 6 4 4.5 3 2 2.25 1.5 1 1.13 0.75 0.5

3 12 2 36 24 16 18 12 8 9 6 4 4.5 3 2 2.25 1.5 1

6 24 1 72 48 32 36 24 16 18 12 8 9 6 4 4.5 3 2

23
* Assuming a 4/4 version of the score (originally 2/4 with finest duration granularity of 64th notes)

Problem #2:
Separating Polyphony In a Track

• A Midi file is basically a stream of on/off note
events and the durations (delta time) between
these events

• In the special case where one voice (without
polyphony) belongs to one track/channel, the
delta time explicitly indicates note durations
– This is what the SID-Wizard midi import quantizer

wants

– Can’t be guaranteed for midi exports from
Sibelius…

24

Midi Delta-Time Rewriting
• Sibelius will sometimes group different staves from the same

instrument type into a single track in its midi exports

• Fix: Wrote Python to perform delta-time rewriting needed to
pull out each channel into its own track
– This way, note on/off delta-time events represent individual note

durations (required for SID-Wizard import)

– Problem solved

25

Track Channel Notes
Delta
time

1 0 E4 on 0

1 1 C3 on 0

1 0 E4 off, F4 on 1280

1 1 C3 off, G3 on 640

1 0 F4 off, G4 on 640

1 0 G4 off 1280

1 1 G3 off 0

Track Channel Notes
Delta
time

1 0 E4 on 0

1 0 E4 off, F4 on 1280

1 0 F4 off, G4 on 1280

1 0 G4 off 1280

2 1 C3 on 0

2 1 C3 off, G3 on 1920

2 1 G3 off 1920

Python

2-note polyphony
example:

Separate delta times:Mixed delta times:

Python Processing Pipeline #1:
Sibelius Output to SID-Wizard Format

• Python Input:
– MIDI score from Sibelius

• Rewrite delta time for channel separation
• CSV mapping file to direct the 30 staves’ content into 10 3-

track SID groupings
– Groupings based on SID filter sharing constraints

• Perform specific metric modulation for each SID grouping
• Make all tracks equal length in time

• Python Outputs:
– 10 midi files (for testing)
– A D64 (C64 floppy image) containing 10 SWM files for

manual processing in SID-Wizard
• Calls out to SWMConvert and VICE’s C1541 26

27

SID-Wizard
Processing

SID-Wizard: Instruments

• SID-Wizard sound design is a manual step in the
pipeline

• Many instrument waveforms needed:
– Flute, Oboe, English Horn, Clarinet in A, Bass Clarinet in

B, Bassoon, Horn in F, Celesta, Violin, Viola, Cello, and
Contrabass

• Fortunately, SIDWizard is distributed with reasonable
(albeit 8580-specific) implementations of most of
these. They’re found in:
– examples\instruments, and
– examples\instruments\didnt-fit-on-disk

• Instrument assignments were manual (not automated
in the python)

28

SID-Wizard: Exporting 10 SIDs

• (Manually) used the C64 utility SID-MAKER-
1.8.PRG to export each of the 10 SWM files
as standard SID files

• SID file format:
– 124 bytes of header info

• e.g., author name, NTSC or PAL, 6581 or 8580, etc.

– native C64 code that plays the music
• Contains a music engine and the note data

– (Does not contain the C64 code to drive the music
engine)

29

30

The YouTube
VICE Demo Was

Easy

The Hardware
Demo Was…

Hardware Goals

• Play music on 10 C64s simultaneously

– Make the sound decent quality

• Eliminate any potential electrical damage to
C64s

• Make it cheap

31

Start 10 C64s Simultaneously
• “Trigger Box” sends the start signal to all the Commodore’s

joystick ports
– 1/8” stereo cables to DE-9
– ATTiny85 used for trigger debouncing
– 2 sets of 5 relays powered by 2N2222 transistors

• Diode protection on relays

– Powered via USB

32

Trigger Box

• If anyone is interested
we have a couple of
extras

33

Eliminate Potential Damage to C64s

• Trigger
– Solution: use reed relays to close switch on

joystick FIRE button
• 1/8” stereo cable channels connected with no

ground, for electrical isolation

• Power supplies
– Put C64 savers on each power supply to

protect against overvoltage
– Problem: that gets EXPENSIVE

• $40 per x 10 C64s = $400 in savers alone

– Solution: build our own savers
• Based on Ray Carlson design with Zeners
• See Knapp’s talk for design
• Bonus: fun project for people to

build at CRX
34

C64 Sound Output

• Made little adapters for 5-pin DIN
cable to RCA plugs for
audio/composite video
– Cost (including parts) $2.50 each
– 100-ohm impedance to ground on

SID chip sound input for noise
reduction

• Sound from each pair of C64s run
through stereo optical converter /
decoder
– Eliminates ground loops
– Grounds only shared between pairs of

C64s
35

TOSLink

Sound Path

• Output from each pair of C64s
– Fed into stereo A-D converter ($10)

– TOSLink optical cable ($2)

– Converted back to stereo by D-A converter ($8)

• 5 pairs sent to mixer
36

Audio
Adapter

Audio
Adapter

A-D
Converter

D-A
Converter

Mixer

x5 RCA RCA

37

Creating The
10 Cartridges

Playing The SIDs

• SID Players are available for most modern platforms
– Player must emulate enough of a C64 and the SID chips to

execute the native C64 code in the SID
• For online play of over 50 thousand SIDs (the HVSC collection), I highly

recommend Jens-Christian Huus’s https://deepsid.chordian.net/

• SID playback on a Commodore 64:
– Requires code (not included in the SID file) to repeatedly call the

song update routine
– This usually occurs either 50 or 60 times a second via

• a raster interrupt (IRQ) @ 50Hz PAL or 60Hz NTSC
• a CIA (Complex Interface Adaptor) timer (IRQ if CIA#1, NMI if CIA#2),
• or some delay loop (time delay, non-interrupt raster position check, etc.)

• We burned 10 cartridges which contain our music and
driver code
– Helps with running the majority of the C64s “headless”

• And hot swapping drive connections was not an option
38

Cartridge Boilerplate

39

*=$8000

; CART ROM HEADERS

WORD COLDSTART ; CARTRIDGE COLD START VECTOR

WORD WARMSTART ; CARTRIDGE WARM START VECTOR

BYTE $C3,$C2,$CD,$38,$30 ; CARTRIDGE AUTOSTART STRING ("CBM8O")

; 16K CART ($8000-$9FFFF ROML AND $A000 TO $BFFF ROMH) THAT KEEPS THE

; 8K KERNAL ROM ($E000-$FFFF)

; DO THE KERNAL SETUP STUFF THAT WOULD HAVE HAPPENED HAD THE CART NOT BEEN

; DETECTED IN THE $FCE2 KERNAL SETUP ROUTINE:

COLDSTART

SEI

STX $D016 ; VIC-II INIT (FOR PAL/NTSC CHECK, ETC.)

; X=0 AFTER MATCHING 'CBM80' IN KERNAL’s

; $FD02 CART CHECK CODE

JSR $FDA3 ; INITIALIZE CIA CHIPS (INCLUDING CIA1 TIMER A @ ~60HZ)

JSR $FD50 ; CLEAR AND TEST RAM

JSR $FD15 ; SET I/O VECTORS ($0314-$0333) TO KERNAL DEFAULTS

JSR $FF5B ; INIT VIDEO

CLI

WARMSTART

JMP MAININIT ; NON-CART TESTING: SYS32794

• Note: The KERNAL is kept by the cartridges. (Without the KERNAL, the
code samples in this presentation would need to be modified)

Setup Raster IRQ To Drive Music Update

40

SEI ; DISABLE MASKABLE INTERRUPTS, AND THEN TURN THEM OFF (BELOW)

LDA #%01111111 ; BIT 7 (OFF) MEANS THAT ANY 1S WRITTEN TO CIA ICRS TURN THOSE BITS OFF

STA $DC0D ; CIA#1 INTERRUPT CONTROL REGISTER (IRC): DISABLE ALL INTERRUPTS

STA $DD0D ; CIA#2 ICR: DISABLE ALL INTERRUPTS

LDA $DC0D ; ACK (CLEAR) ANY PENDING CIA1 INTERRUPTS (READING CLEARS 'EM)

LDA $DD0D ; SAME FOR CIA2

ASL $D019 ; TOSS ANY PENDING VIC INTERRUPTS (WRITING CLEARS 'EM, VIA RMW MAGIC)

LDA #$01

STA $D01A ; ENABLE RASTER-COMPARE INTERRUPT

LDA #$80

STA $D012 ; SET SCAN LINE THAT WILL TRIGGER THE RASTER-COMPARE INTERRUPT

LDA #%00011011 ;

STA $D011 ; BIT 7 IS THE 9TH BIT OF THE SCAN LINE VALUE

LDA #<IRQHANDLER ; HOOK INTERRUPT ROUTINE

STA $0314

LDA #>IRQHANDLER

STA $0315

CLI ; RESTORE INTERRUPTS, HOOKING COMPLETE

• Music plays at the rate that it’s updated (in this case, 60 times
per second)
• 60 Hz update frequency is the default SID-Wizard NTSC assumption

• This is how nearly everyone drives their SID music play
routines

Raster IRQ Handler (simplified)

41

IRQHANDLER

INC $D019 ; CLEAR (ACK) OUR RASTER-COMPARE INTERRUPT

; INC (OR ASL) USES RMW (READ-MODIFY-WRITE) TO READ VALUE, WRITE THAT

; VALUE BACK ON IT (THIS DOES THE INTERRUPT ACK), THEN WRITE RESULT

; OF THE INC OPERATION (WHICH DOES NOTHING). AVOIDS AN LDA FIRST.

LDA #$0E

STA $D020 ; BORDER COLOR CHANGE TO INDICATE RASTER TIME CONSUMED

JSR UPDATEMUSIC

LDA #$06

STA $D020 ; RESTORE BORDER

JMP $EA31 ; EXIT THROUGH THE KERNAL'S 60HZ IRQ HANDLER ROUTINE

• Code (not shown) includes logic to stop the music if the
trigger button is held for 3 seconds.

C64 Synchronization Concerns
• Joeri showed me a Commodore he was repairing that had

the older VIC-II chip in it
– It later occurred to me that an old VIC-II chip might have a

different screen refresh rate. Sure enough, it does!

• Given 1,022,727 CPU cycles per second (NTSC), and 90
seconds of music:

42

NTSC VIC-II Variant
Lines per

frame
Cycles per

line
Cycles per

frame
Refresh

rate
Music

updates
Total
cycles

New: 6567R8 263 65 17095 59.83Hz 5385 1538550

Old: 6567R56A 262 64 16768 60.99Hz 5490 1509120

• This predicts that the music update would be called 2%
more frequently with the older 6567R56A chip! 

• Therefore, we changed over to CIA timer-based interrupts,
so that we aren’t tied to inconsistent screen refresh rates

• Note: Timers from CIA 6526/6526A chips manufactured ≥ 1987 throw an interrupt one cycle earlier than
they should
– But we can live with a one-cycle difference every 60hz
– (CIA 6526/6526A manufactured < 1987 and the 8521 are unaffected)

Setup CIA#1 Timer IRQ

43

SEI ; DISABLE MASKABLE INTERRUPTS, AND THEN TURN THEM OFF (BELOW)

LDA #%01111111 ; BIT 7 (OFF) MEANS THAT ANY 1S WRITTEN TO CIA ICRS TURN THOSE BITS OFF

STA $DC0D ; CIA#1 INTERRUPT CONTROL REGISTER (IRC): DISABLE ALL INTERRUPTS

STA $DD0D ; CIA#2 ICR: DISABLE ALL INTERRUPTS

LDA $DC0D ; ACK (CLEAR) ANY PENDING CIA1 INTERRUPTS (READING CLEARS 'EM)

LDA $DD0D ; SAME FOR CIA2

ASL $D019 ; TOSS ANY PENDING VIC INTERRUPTS (WRITING CLEARS 'EM, VIA RMW MAGIC)

LDA #<SONGSPEED ; SET UP CIA#1 TIMER A DURATION (SECONDS = SONGSPEED/1022730 for NTSC)

STA $DC04 ; KERNAL CIA#1 TIMER USES 17045 CYCLE COUNT FOR 60HZ

LDA #>SONGSPEED ; HOWEVER, 17094 GIVES STABLE SYNC WITH NTSC ON NEW VIC-II

STA $DC05 ; RASTER BAR WILL SLOWLY MOVE ON OLD VIC-II, INDICATING OLD CHIP

LDA #<IRQHANDLER ; HOOK INTERRUPT ROUTINE (NORMALLY POINTS TO $EA31)

STA $0314

LDA #>IRQHANDLER

STA $0315

LDA #%10000001 ; CIA#1 ICR: B0->1 = ENABLE TIMER A INTERRUPT,

STA $DC0D ; B7->1 = FOR B0-B6, 1 BITS GET SET, AND 0 BITS IGNORED

LDA $DC0E ; CIA#1 TIMER A CONTROL REGISTER

AND #%10000000 ; PRESERVE KERNAL-SET TOD CLOCK NTSC OR PAL SELECTION

ORA #%00010001 ; B0->1=START TIMER A,

; B3->0=TIMER CONTINUOUS RUN MODE,

; B4->1=FORCE LATCHED VALUE INTO TIMER A COUNTER

; LATCHED VALUE (WHICH CAN BE CHANGED AT ANY TIME) WILL BE RELOADED

; WHEN TIMER REACHES 0 (IN EITHER ONE-SHOT OR CONTINUOUS RUN MODE).

; FORCING LOAD JUST PUTS IT IN THE TIMER IMMEDIATELY.

; B5->0=TIMER A DECREMENTS EACH CPU CYCLE (MAPPING THE C64 HAS THIS WRONG)

CLI ; RESTORE INTERRUPTS, HOOKING COMPLETE

CIA Timer IRQ Handler (simplified)

44

IRQHANDLER

LDA $DC0D ; ACK (CLEAR) CIA#1 INTERRUPT

LDA #$0E

STA $D020 ; BORDER COLOR CHANGE TO INDICATE RASTER TIME CONSUMED

JSR UPDATEMUSIC

LDA #$06

STA $D020 ; RESTORE BORDER

JMP $EA31 ; EXIT THROUGH THE KERNAL'S 60HZ IRQ HANDLER ROUTINE

• Our timer interrupt handler still
modifies the border to show
SW play routine cycle
consumption

• Bar position is stationary on
new VIC-II chips, but slowly
sweeps the screen on old VIC-II
chips
– Turns out, two of the orchestrion

C64s have the older chip

Versa64Cart Makes Assigning
SIDs to C64s Easy!

• Used 64K EEPROM
chips to hold 4 16K
cartridge images
– Could easily have

gotten away with 8K
cartridges

• 16K cartridge uses:
– 8K at $8000 (pin 8

GAME low)
– plus 8K at $A000 (pin 9

EXROM low)
• Requires SID to be

relocated in memory at
runtime

45

Python Processing Pipeline #2:
SID-Wizard Output to Cartridge Code

• Python Input:
– 10 SID files

• Python Outputs:
– 3 64K BIN files (carts 1-4, 5-8, and 9-10) for cartridge

EEPROM burning
• BIN = a PRG with the first two (load address) bytes removed

– 10 CRT files, for cartridge testing in the VICE emulator
• CRT is a BIN file with a bunch of headers describing the

cartridge
– e.g., expansion port pins 8 (GAME) and 9 (EXROM), chip type

(e.g., ROM, RAM), image size, etc.

– Coded python to the specification for 16K cartridge CRT headers:
http://vice-emu.sourceforge.net/vice_16.html#SEC330

46

First Complete Test:

47• Full setup requires 13 110v and 11 USB power outlets

48

Future
Explorations?

Different Music?

• This was a lot of effort for 90 seconds of music

• Joeri thinks that The Nutcracker is boring, and
that I should adapt Daglish’s The Last Ninja to
10 C64s

– We’re still negotiating… ☺

49

Resynchronization Needed for Longer
Music

• Our trigger box approach resyncs the C64s’ CIA timers
(crystal-based) whenever the song is (re)started
– Our music is only 90 seconds long, so no resync needed

• However, much longer music will require some kind of
synchronization broadcast signal

• How often to resync?
– Resyncing at the update rate is overkill, as the update rate

is comfortably beyond human temporal perceptual limits
• For NTSC 59.95 Hz, jiffy music update resolution is 16.8 ms

– Sync only required every minute or so
• Simple (naive) approach: Assume that for every sync, there are n-

1 music update + delay pairs, followed by one music update.
Immediately after the last update, block until next sync

• If syncing once a minute, the above approach requires cycle count
to be accurate to within 1 part in 3600 (trivial)

50

Synchronization Approaches
• Got some great sync suggestions from Mario Schallner's /

Marilli Man's SID Trackers Facebook group

• Internal sync approach:
– Krzysztof Kluczek suggests that the songs could sync from CIA Time of Day

(TOD) clock interrupts

• Too slow to drive the music (10ths of seconds granularity), but sufficient for
resyncing every few minutes

• TOD clock not derived not from the crystal, but the AC input (so make sure all boxes
are on the same outlet)

• External sync approaches:
– Max Hall says that Ben Daglish did a two C64 version of his Trap music using

joystick ports to periodically maintain sync

• Marcin Skoczylas has a current FPGA project where he uses a similar approach

– Instead of active polling for joystick port signals, external signals can trigger
interrupts

• CIA#1 can throw IRQ based on the cassette read line, and CIA#2 can throw NMI
based on Pin B of the User Port 51

If We Were Really Ambitious…

52

• This project had a lot of moving parts, but at no time
did it feel intractable

• For an extra challenge, trigger box could also be
made to collect periodic heartbeats sent from the
headless C64s to detect if crashed or out of sync

• If really ambitious, put a GPS chip on each music
cartridge for 1 nanosecond time resolution

• If really (really) ambitious, all the sync broadcasts and
heartbeats could be wireless if ZigBee was added to
the music cartridges ☺

Quick Plug for The Current 8-Bit
Symphony Kickstarter (ends Sep 8th)

• 8-bit symphony: professional orchestrations of Commodore
64 game tunes
– Rob Hubbard, Martin Galway, Ben Daglish, Paul Norman, etc.

• The current Kickstarter aims to have a professional recording
of the music that I saw performed in Hull (it was amazing!)
– If funded, will be recorded in Prague with a John-Williams-size studio

orchestra, supervised by Rob Hubbard himself

• Links:
– The Kickstarter: https://www.kickstarter.com/projects/8-bit-

symphony/8-bit-symphony-pro-double-orchestral-cd-of-8-bit-classics

– 25-minute music sampler: https://soundcloud.com/chrisabbott/8-bit-
symphony-volume-1-sample-caution-spoilers-for-8-bit-symphony-
concert

• If you love C64 music like I do, it’s a no-brainer to support
this one 53

https://www.kickstarter.com/projects/8-bit-symphony/8-bit-symphony-pro-double-orchestral-cd-of-8-bit-classics
https://soundcloud.com/chrisabbott/8-bit-symphony-volume-1-sample-caution-spoilers-for-8-bit-symphony-concert

54

Questions?

Suggestions?

Thanks!

